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1 INTRODUCTION

This report discusses the work accomplished during the AFOSR Grant

AFOSR-84-0203, entitled "The Influence of Electric Current on Crack Propagation in

Thermal Fatigue Tests." The goal of this work was to develop a method for

estimating the crack tip stresses that result from a non-uniform temperature

distribution near the crack tip that occurs when resistance heating is used to

thermally cycle fatigue specimens.

A problem associated with thermal fatigue tests is obtaining sufficiently rapid

thermal cycles in the test specimens. In order to overcome this problem, large

electric currents are often used to cyclically heat the samples since this mode of

heating can be easily controlled and rapidly cycled. However, in the presence of an

open crack an otherwise uniform electric field is disturbed, causing a I/i'singuiarity

in the current which results in localized heating at the crack tip. Thus, cracked
thermal fatigue specimens which are electrically heated have a distinctly non-uniform

temperature field with the crack tip acting as a heat source in the material.

Recently, experiments were conducted through a program sponsored jointly by the

Air Force Wright Aeronautical Research Laboratories and the Defense Advanced

Research Projects Agency. The aim of the experiments was to address the impact of

*simultaneous variations in temperature and stress on crack growth predictions [1].

Temperature variations were achieved by application of a 60 Hz a.c. current.

Comparison of results obtained on samples which were thermomechanically fatigued

out-of-phase (temperature and load cycles were 1800 out of phase) to those fatigued

in-phase showed a significantly greater crack growth associated with the in-phase

testing, while no discernible difference between the crack growth rates of out-of-

phase and isothermally tested samples was observed. An additional outcome of the

testing is a distinct difference in crack growth behavior between specimens tested

. out-of-phase and those tested either isothermally or in-phase. The out-of-phase

samples exhibited significant shear lips while those tested isothermally and in-phase

exhibited flat crack faces.

A possible explanation for the anomalous crack growth behavior is that thermal

stresses caused by the resistance heating were not taken into account in calculations

of stress intensities. It is the goal of this work to estimate the contribution of the

electric field to the stress intensity as induced by the associated quasi-static

temperature field to estimate the magnitude of its contribution under test conditions.

am ko.
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The problem of analytically determining the mechanical state of the crack tip in an

electrically heated specimen requires the solution of two interrelated problems:

determining the disturbed electric field in the crack region from which heat

generation can be calculated and secondly, using the heat generation as a heat source

in the thermoelasticity problem to calculate the stress field.

The electric field problem has been of interest in fracture mechanics because of its

role in the widely used electric potential technique for monitoring fatigue crack
growth. Analytical, experimental and numerical procedures have been developed to

determine suitable calibration curves which relate the potential drop across the crack

to the crack length, see, for example, references [2-6]. The analytical expressions

generally use the analogy of fluid flow around a flat plate and a mapping technique

such as the Schwarz-Christoffel technique used in the present analysis [7].

The thermoelastic problem is more complex. The estimation of thermoelastic

stresses induced by a heat source at the tip of a crack requires determining the

solution to Poisson's equation to obtain the stationary temperature field and the

solution- to the nonhomogeneous biharmonic equation to obtain the stresses due to4
the temperature field. The latter part uses the Duhamel-Neumann analogy and

associated modified Airy stress function to separate the nonuniform temperature

distribution from the elasticity problem [8-10).

The first work dealing with the two-dimensional thermal stress fields associated

with cracks was publi!,hed by Florence and Goodier [11) and Sih [12). The method

of complex representation of the elastic state was used to derive the theoretical

stress intensity factors in infinite two-dimensional cracked regions for both the

symmetric and antisymmetric problem classes. Sih gives the thermal stress

components near the crack tip (for the geometry in Figure 1, neglecting higher order

terms) as

K1 9 39 K2  9 8 3001x = 1 cos - (1 - sin - sin -- sin - (2 + cos - cos - 1

yrC 2 2 \2r 222

K 1 0 0 39 K2  9 9 30
S- cos - (1+sin - sin -) 2 sin - cos - cos - (2)

r 2 2 2 2r 2 2 2
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K1  0 6 36K 6 36sn-cos- cos - + T cos - (10 sin - sin -) (3)
XY 2r 2 2 2 2r

where

2
K, =-V Re[A] (4)

4is the symmetric stress intensity factor,

-2
K =.- Im[A] (5)

is the antisymmetric stress intensity factor and A is a complex constant which

depends on crack configuration and the form of the prescribed temperature contraints.

These expressions are identical to the general elastic crack-tip stress field given by
Irwin [13] for traction boundary condition problems. With some manipulation, the

corresponding stress distribution in terms of polar coordinates can be written using

identities given by [14] as:

K, 6 36 K 0 36
r =- (5 cos-Cs -) -- 2 - (5 sin 2- 3 sin -) (6)r42r 2 2 4,/2r~ 2 2

Ki 0 30 K2  0 36
.1' U 6 =-J(3 cos - + cos --- )- (3 sin - + sin--) (7)

2r/ 2 2 2r/~ 2 2(7

K, 6 30 K 6 36r. =  (sin - + sin -- )+ -2 (cos - + 3 cos -) (8)
094r2- 2 2 4,/- 2 2

where K1 and K2 are as defined above.

An alternative formulation for this class of problems was presented by Bapu Rao

[15] for determining the state of thermal streses in an insulated crack in an infinite
thin plate subjected to uniform heat flow. In this case, both the stationary
temperature and stress problems were formulated in the elliptic coordinate system

and the solution developed completely in elliptic coordinates using biharmonic
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functions and then the results were transformed through a series expansion to polar

coordinates with the crack tip as the origin. The final results obtained for the local

stresses at the crack tip in polar coordinates agree completely with those obtained

by Sih. It is noted that the real parts of the stress field are identical to the singular

terms of the Williams' eigenfunction relations expressed by Torvik [16,17).

Experiments performed by Svoboda [18) showed good agreement between the

stress field corresponding to uniform heat flow presented in [12) and experimental

data. The test specimens used were made of plexiglas since this material is

essentially brittle, can be prepared easily and is relatively isotropic. In this case,

the complex constant, A, corresponded closely to that obtained by Sih for the

antisymmetric, uniform temperature field case:

iG, a2 sin VA = • VT (9)
(1+ V

0

where a is the thermal expansion coefficient. v is an elastic constant (v = 3 - 4y,

plane strain, v = (3 - )(1 + ), plane stress), a is half the crack length, and VT is

the undisturbed temperature gradient directed at an arbitrary angle Y with respect to

the crack axis.

Thus, estimating the stress field induced by electric current flow around a crack

reduces to determining the coefficient of tie singular term in Williams' eigenfunction

series caused by the symmetric temperature field induced by the electric current. In

addition, the solution to the elasticity problem must satisfy appropriate boundary

conditions. In the problem considered herein the boundaries will be considered

traction free, consequently, any stresses that are calculated exist in addition to those

induced by mechanical loading.

Because of the complicated form of the boundary conditions in elasticity problems,

closed-form solutions to problems of cracks in finite regions are rarely obtained.

Several investigators have studied the problem of thermoelastic stresses due to

various temperature fields in cracked regions. Konishi and Atsumi [19) used the

method of integral equations to numerically solve the antisymmetric uniform heat

flow/insulated line crack problem for a semi-infinite strip with the crack parallel to

the surface. Their results revealed a stress intensity factor proportional to the

temperature gradient times the crack length to the 3/2 power, consistent with Sih's

result.

L %
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Sekine [20,21] also studied the two-dimensional insulated line crack/uniform heat

flow problem in a semi-infinite strip with the crack arbitrarily oriented. In [20], the

temperature was prescribed on the surface of the crack and the crack was modelled

as continuous distributions of heat sources and edge dislocations. Singular integral

%" equations were derived and the solution obtained is in the form of the product of

the series of Tchebycheff polynomials and their weight functions. In [21], the

corresponding problem for a thermally insulated line crack was solved by introducing

a continuous distribution of sources of temperature discontinuity rather than that of

heat sources. Similarly, Tchebycheff polynomial series were obtained. The

coefficients of the polynomials were determined by solving the set of linear

algebraic equatidns. The stress intensity factors for the symmetric and

antisymmetric types were numerically evaluated and compared graphically. The

results for the limiting case when the crack is situated extremely far from the

surface are, again, in complete agreement with Sih. The results for the case when

the uniform heat flow is perpendicular to the plane of the crack are in agreement

with Konishi and Atsumi.

Other geometry and temperature field two-dimensional crack problems have been

studied. Sekine [22] also studied the problem of a heated bounding surface and

solved it numerically again using singular integral equations and Tchebycheff

polynomials. Tweed and Lowe [23] used transform techniques to reduce the general

problem of a crack in a half-plane to that of solving integral equations. The point

source problem, was solved numerically for a hollow cylinder of infinite length by

Herrmann and Kuemmerling [24] by using singular integral equations. They

emphasized that for cracks of large length where the surfaces strongly influence the

stress intensity, this numerical method is inappropriate and suggested using finite-

element or the well known J-integral (a note on the use of the J-integral for thermal
-stress problems is in [25]).

".'" Finally, Sumi and Katayama [26] studied thermal stresses at crack tips in finite

plates. Their results, for both symmetric and antisymmetric cases were obtained by

evaluating the unknown coefficients in the eigenfunction series using a modified
mapping collocation method.

The role of electric current in thermo-mechanical fatigue tests has previously not

been established. The presence of the crack causes a singularity in the electric

current which, because of resistance heating, induces an even more severe singularity

in the heat flux at the crack tip. This singular heat source can lead to significant
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temperature gradients which are not being taken into consideration by temperature

measurements made at some finite distance from the crack tip. Thus, one goal of

the current work is to establish the magnitude of the temperature gradient near the
crack tip in order to estimate errors that can occur in measuring crack tip

temperatures. The temperature field that results from the singular heat flux also

-: gives rise to thermal stresses which load the crack tip. These stresses will affect

how the crack propagates. Thus, a second goal of this work is to establish a
A method for estimating the crack tip stresses that are induced by the current/crack

interaction.

In order to establish these estimates of crack tip temperature and stresses in a

form which is easily applicable to a variety of materials, the problem is simplified in

the following manner, enabling relatively simple closed form solutions. The

specimen which is heated electrically may have the edge crack geometry of Figure 2.

The problems that will be analyzed will be concerned with the circular subregion (Ra

of Fig. 2) of radius 'a' which surrounds the crack tip. The electric potential in this

region is assumed to be the same as that which occurs for a crack in an infinitely

wide plate. The current terms that are singular are extracted from the infinite plate

solution by representing the solution in terms of the eigenfunctions associated with

the cracked circular plate. The temperatures in the cracked circular plate are
calculated based on three assumptions: the temperature is a constant reference value

on the outer boundary, the crack acts as a perfect insulator, and the region is heated

only by the singular heat flux term. Once the temperature field is determined, the

thermal stress fields in the cracked circular plate are calculated under the assumption

that its boundaries are traction free. The thermal stress problem is solved using

Williams' stress functions which satisfy the boundary conditions on the crack face

and which are numerically made to satisfy the boundary conditions on the outer

boundary in a least squares sense. Only the lowest order stress function gives rise

to singular crack tip stresses and its coefficient is proportional to K, the 'stress

intensity' parameter commonly used in fracture mechanics to assess damage. Thus,

the solution results in a relatively- simple expression for estimating the stress

intensity induced by local heating of the crack tip that can occur while using electric

currents to heat thermal fatigue specimens.

Stress intensity factors for some nickel alloys are calculated using the data

presented in [1], and are compared with the stress intensity factors induced by an

isothermal mechanical fatigue specimen of the same type. The results show the

- °" ' " '- "' = 4" = " .' . ',-% ' ', " "'. '. '. = " "" ~ . ° °. ,- .- - .- . '. '.".. - .- , "o ." . °.. N ° " " -. = ,
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- thermal stress intensity induced by the electric current is significant and is additive

and therefore can contribute to an increased crack growth rate in electrically heated

thermal-mechanical fatigue tests.

2 ELECTRIC POTENTIAL PROBLEM

The electric potential problem is solved for the model problem. First the electrical

potential over the circular region is established through a mapping technique. From

this, the boundary condition, E(a,O) = f() is determined for the circular region

containing the crack. The boundary condition is then used to numerically evaluate

the Fourier coefficients in an eigenfunction representation of the electric potential.

This approach isolates the term that causes a singular heat flux at the crack tip. It

is the contribution of this singular heat source to the thermoelastic stress field which

will be evaluated in this report.

2.1 Formulation

Two regions are first defined (see Figure 2). R corresponds to the circular region• - a

surrounding the semi-crack in which the thermoelastic problem will be solved, while

R is the complementary region of the plate, not including R,0 a

R = {(r,) 0 < r < a, -i < 0 <
S. a

R = ((x,y) 0 < x <-- < y < ,xy R)
0 2 2 2 a

The electric potential problem is then stated: determine E(r.) such that

V 2 E(r,O) = 0 on R (10)a

and satisfying the boundary conditions

F(a,) = VOL

where f(8) is determined below. The condition of perfect insulation (no current flow)

across the crack requires

SE aE
Y,9 (r, ) = Y (r,-,r) = 0 ( 1)

Finally, the potential must also be bounded at the crack tip,
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IE(r,0)I < M as r -- 0 (12)

2.2 Determining the Boundary Condition, f()

In order to establish the appropriate boundary condition, a Schwarz-Christoffel

conformal mapping is used. From [7], the solution to the problem of uniform flow

about a flat plate is given by the complex potential

2 2 1/2 (,3*" (z) = V 0(z 2  4. a2)1  = plx, y) * il,(x,y) (13)

here O(x,y) is the velocity potential, f(x,y) is the stream function, V is the far field
0

velocity and z = x + iy. The fluid problem is analogous to the electric potential

problem where V is equivalent to E /L (E is the applied voltage and L the specimen

length). The electric potential is analogous to the velocity potential which is the real

part of I(z). Thus, to find the potential on the boundary r a, the complex

geometry in Figure 3 is used:

O(x,y) Re] - o co 1 (14)
L 2

* where p1 ' P2' 01' 02 are defined by Figure 3. On the boundary r = a,

E 4ir 1 "  -sin ]
=- 5 + 4 cosG cos - L + - + arc cos M a

L 2 2 5 + 4 cos0

= f(0) (15)

2.3 Solution

The solution to the electric potential problem is expressed in terms of the
eigenfunctions of the problem by using the separation of variables technique:

Er,) = R(r)() (16)

Problem symmetry leads to
00

E(r,9) = C + z C rn/2 cos n(O - 0)2 (17)
n=1

The electric potential within the circular region is obtained by determining the

6U-
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coefficients in the Fourier cosine series. Since the functions are orthogonal, the

coefficients can be evaluated directly,

a.', (2- /2

C = cos f()d (18)• .- n .2

by performing the integration numerically. Results of this numerical integration are

tabulated in Table 1 for values of n up to 32. Neglecting higher order terms, the

first coefficient (singular current coefficient) gives an expression for potential as a

function of r and 0:

-E
E(r,9) 2ar -2 cos(G - v)12 (19)

L

It is this component of the electric potential which gives rise to the dominant

,. (singular) heat source at the crack tip and, consequently, it is the contribution of this

- term which is evaluated in this report.

3 THERMOELASTICITY PROBLEM

Once the potential over the plate is obtained, the heat flux in the circular region

- can be determined. From this, the thermoelasticity problem, which includes finding

the temperature field, is formulated using the Duhamel-Neumann analogy to model the

problem as one with a constant temperature field. Using this approach, an Airy

stress function formulation may be used in which the temperature field produces

surface tractions and body forces. The solution to the resulting non-homogeneous

biharmonic equation is determined using standard techniques. The solution to the

homogeneous part is represented in terms of Williams' eigenfunctions, the

coefficients of which are evaluated numerically. The coefficient of the lowest

Williams' eigenfunction establishes the magnitude of the singular stress field at the

crack tip, and it is this quantity which we seek to evaluate.

3.1 Formulation

A. The Temperature Field

The heat flux. h(r,A), induced by the current is

h(r,) =o(VE • VE) (20)
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where o is the electrical conductivity. For steady-state temperature fields, the local

temperature variation, T(r,A), is related to the heat flux by

Sh(r, 8)
V TOr,9) = - -(1

k

where k is the thermal conductivity.

* The temperature field must satisfy the condition of a constant reference

temperature at the edge

T = T on r = a, -r< 6 < (22)

perfect insulation across the crack requires

aT aT
- (r,-n) = - (r,) = 0, 0 < r < a, (23)

finally, the temperature must remain bounded in the limit as r approaches zero,

IT(r,8)1 < M as r -+ 0. (24)

B. The Stress Field

Duhamel's analogy states that the stress field in a body subjected to a temperature

distribution, T(r,O), but with zero body force and zero surface tractions is the same

as that given by a superposition of hydrostatic pressure

or = o0 =- BT, rro = 0

Cwith that given by another problem in which the same body is kept at a uniform

reference temperature but subjected to a body force with components

aT 1 aT
F =-8F, r r 'r 30

1To satisfy equilibrium, the hydrostatic pressure field can be thought of as having body force components F- 8 (3Tlar) and F8 = ,(at/a6)r and surface tractions having a normal component of -fT. Thus, thr

superposition with the second problem yields the original conditions (zero body force and surface tractions).

. .*. ,.-, . , . , . , - . :..,. ,-.-.,.-.,: .- . .-.. ,-. , .
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and with a surface traction with a normal component of 8ST where

aE
,8 =- (25)C '-=1 - 2v

corresponds to plane strain and

aE
,8 = - (26)

1 - V

to plane stress.

The solution to this problem is solved by introducing the Airy stress function, *,
such that

1 , 1 a2
=OFr = r +  r- , +  ,BT (27)

or8 = y- + 8ST (28)

r-) (29)

Stresses given in this manner automatically satisfy equilibrium. Compatibility is

satisfied if

V 4 . = - V 2T (30)

where

aE
1v =(31)

corresponds to plane strain and

.I.). .
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= aE (32)

to plane stress.

The stresses associated with the Airy stress function must satisfy the modified

traction boundary conditions:

Orr = ,T, rr= 0 on r = a, -a < 0 < (33)

o =,T, r'9
= 0 on crack faces, v, 0 < r < a (34)

3.2 Solution

A. The Temperature Field

Applying Ohm's law, the heat flux induced by the current is

a
h(r,9) = o, - (E /L)2  (35)

2r 0

which yields the axisymmetric temperature distribution when Poisson's equation (21)

is solved:

ora 2
T(r,9) = - - (E /L) (a - r) + T (36)

k 2 0 0

B. The Stress Field

From (30) and (36), the resulting nonhomogeneous biharmonic equation in plane strain

becomes

a Ea
V 4 . = (E /L) 2  (37)

2(1 - v)kr 0

This equation is solved using superpositioning and separation of variables. The

solution to this equation (for details, see Appendix A) is

aE (E)2 r3  (3 8
-- (A - (1 + coso) + D r rC (38)

2(1~ L a .cDrn=
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where n are the symmetric Williams' eigenfunctions which yield the relationshipsn

000

#= nrln-2)12 [ (6-n)cosln-2) - n2())csn2

ar= D n r(n-2)12 I (n+2)cos(n-2) -2 (n+2(-1)n)cos(n+2) 2] (39)

r=1

00 (n 2 / 09 9 ]n
fr= Dn r~n 2 )/2 L (n-2)sin(n-2) - (n+2(-1)n)sin(n+2) 2,r= 1 2 2

C. The Stress Intensity Factor, K 1" Obtaining a stress intensity factor requires finding the coefficients Dn which satisfy
n

the appropriate boundary conditions. The boundary conditions (see Appendix A)

require

00 a n - 2)/2 [ (6-n)cos(n-2) 0 + (n+2(-1)n)cos(n+2) ]
n 2 2

n1=1

a2 (E 2  aE
2k -) (3 + 2cos8)
2k L 9(-)

00 D(n-2)/2 [ (n-2)sin(n-2) 8 - (n+2(-1 ))s in(n+2) 8 (40)
Dn 2 2

n1=1

z j-1 (22 sinG)
2k L 91- )(2

- The the stress intensity factor, Ki , is defined by

K1 r-l0m 2=r r9 evaluated at O 0. (41)
r4 2

,V
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From (39).

K1 = 4%2"w D1,
)1I1

From Appendix A,

-ua5/2 E 2 aE
,= -(3d + 2d) (42)

2k L 9(1 - v) 1 2

where dI and d refer to the normalized coefficients and d which correspond
12 1 2

respectively to unit pressure and sinusoidal loading on the boundary r = a.

Thus the stress intensity factor can be written generally as

K -2-1 aE Eo
K'-.' I k(1 - ) (-) a5/2 [ 3d, +  2d 2 ] (43)9.. ;0 L

for the plane strain case.

The generic coefficients d1 and d2 were determined numerically by least squares

technique (see Appendix B). For this configuration.

d = 0.560764
d2 = -0.913788

4 RESULTS

The key results of the benchmark problem are the following two simple expressions

which give estimates of the error in the steady state temperature and the associated

thermally induced stress intensity factor:

T-T - - 2 (44)0 2k L

i =~Eo, Eo)2 a5/2

KI = 0.231 2 L) (45)2k L a5 2 ()
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for Poisson's ratio equal to 0.3. Applying these results to the specific data

generated by the thermal mechanical fatigue tests in reference 1, it is shown that the

effect of the current on the local temperature, and consequently thermoelastic stress

intensity factor, can be quite significant.

The materials used for high-pressure compressor and turbine disks and spacers in

the Air Force F100 engine are high strength nickel-base alloys IN100 and Astroloy

[1]. Fatigue data in [1] were provided for IN100. The temperature range of the

tests is between 500 and 12000 F. Materials properties data for IN100 are listed in

Table 2 for three temperatures: 70, 600 and 12000 F. Under the assumption that the

sinusoidal variations of heat flux (current) and temperature are in phase (steady state

thermal analysis), the maximum voltage corresponds to the maximum temperature.

Thus, the 1200°F data were used for calculating the magnitude of K.

The stress intensity factor in the thermal-mechanical fatigue tests at termination,

according to [1], is approximately 80 ksi TinW A significant error, then, would be

about 10 ksi 1T (> 10%). Using the above expression and a specimen length of 1.5

in, this degree of error would require an applied voltage of only 0.65 V (for a critical

crack length of 0.3 in.). This small voltage prompted further investigation during

which it was learned that the actual voltage drops measured across the test

specimens were less than 0.4 V [27]. (Using the upper limit of the 0 - 3 V range

quoted in [1] would yield an electric current-induced stress intensity in this material

of greater than 150 ksi in.!) Using a revised voltage range of 0 - 0.4 V and the

materials data in Table 2, the most severe test conditions would yield a current

induced stress intensity of approximately 3.5 ksi lrn. This value would not be

expected to cause significant errors in the experimental methods that are presently

used for measuring crack growth.

However, the expression for stress intensity factor is strongly dependent on crack

length (as a 5/2). Thus, a slight extension of the critical crack length can change the

previously relatively small errors in K to significant ones. For example, extending

the critical crack length from 0.3 in. to 0.4 in. results in an approximate 10% stress

intensity error when the same upper limit on voltage (0.36 V) is applied.

The simple expression for current induced stress intensity presented above offers

the advantage that it can easily be applied to different materials. Due to variations

in materials properties, particularly electrical and thermal conductivity, small voltages

may have pronounced effects on the electric current induced K for other materials.

F6 z
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Table 3 lists several commercially available high-strength nickel alloys and their

compositions for comparison. Some of these alloys are used in gas turbine

manufacture. Pertinent materials properties for each of these alloys are listed in

Table 4. The room temperature and 600 OF data for IN100 were used to calculate

stress intensity estimates for comparison to those materials listed in Table 4.. The

ratios of K to the appropriate temperature value of K for IN100 are also listed in the

table. It is noted that the stress intensity estimates of all materials listed are

greater than that of IN100. It is possible that the resistivity of IN100 as listed

(calculated from data obtained during the fatigue testing) is greater than the actual

value due to equipment configuration and testing error. This would suggest that the

actual stress intensity error is significantly greater than the 5% previously stated,

possibly even twice as high.

Displacements at the crack edge were calculated to compare with test observations.

The detailed displacement analysis is given in [35]. The analysis reveals a small

crack opening displacement of approximately 0.0001 in. These results are consistent

with the crack opening displacements measured on test specimens.

5 DISCUSSION

The use of a benchmark or model problem to estimate errors in stress intensity

factors and local temperatures in thermal-mechanical fatigue testing which uses large

electric currents for heating has shown that this mode of testing results in a mor-

severe stress state than if conventional heating methods are used. The reason for

the more severe stress state is that the application of a constant voltage across a

cracked specimen results in a singular current and, consequently, a singular heat
source. The singular heat source does not result in a temperature singularity,

however, so the temperature remains bounded at the crack tip.

The relative discrepancy between conventional heating fatigue testing and resistance

heating fatigue is quite dependent on crack size (as a 5 / 2 ) and materials properties:

primarily thermal and electrical conductivity and linear thermal expansion. Materials

exhibiting low electrical resistance and high thermal expansion are, in general, more

e.. .susceptible to this mode of thermal loading.

Simple expressions for estimating the contribution of electric current to the stress

intensity factor and local temperature field were developed. These expressions are

estimates in light of some basic assumptions made during problem formulation. The

validity and consequence of some of these assumptions will be discussed here.

18k
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Beginning with the electric potential problem, we first assumed that skin effects

(the concentration of electric current near surfaces) can be neglected. This allows

the problem to be configurated as one in two-dimensional plane strain. In reality,

however, the skin effect is known to be important in some cases. If the skin effect

is important in the present system the consequence is a hotter surface due to the

higher current density in that area. One example where the skin effect is important

is in a cracked plate with uniform applied magnetic field [34J. The increase in

current density uniformly from the center to the outer edge in this case was

S.determined by finite element to be approximately 20%. It is possible that this edge

effect may be related to the shear lip formation observed in some of the iatigue

specimens in that K could be higher near the surfaces of the specimens.

Secondly, the assumption that higher order terms in the electric potential series

expression can be neglected when calculating the heat source induces an error when

calculating the stress intensity factor. The trouble with including more than a limited

number of terms in the series is that the problem would then have to be solved

completely numerically. By using the current approach, relatively simple expressions

were derived for the temperature error and the current induced stress intensity which

may be easily evaluated for any material. However, these results are not exact and

only provide an estimate of the magnitude of this effect.

It is noted again that although the greater crack growth rates are observed in the

in-phase testing, it is the out-of-phase test samples that exhibit the anomalous crack

growth behavior. Time histories of temperature and electric current that were taken

during a crack growth test [27] are plotted in Figure 5. It is apparent from this data

that the assumption that the current and the temperature are in phase is inappropriate

under actual test conditions. In fact, it is clear from the phase lag between current

and temperature that thermal transients play an important role in these cases.

* Moreover, the temperature information in the figure may be used to estimate the

relative magnitude of the time dependent term in the heat equation. Averaging over

a circle of radius a. the heat flux generated by the electric current (15 °Flsec) is of

comparable magnitude to the thermal transient term (12 °F/sec). This indicates that

the assumption of steady state in the thermal analysis should be reconsidered and

that transient thermal effects should be taken into consideration in order to

accurately relate analyses to the laboratory situation.

In conclusion, a first estimate to the role of electric current in thermal fatigue tests

has been obtained. It was calculated under the assumption that the singular heat flux

-. .
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term would dominate the near field behavior at the crack tip. Appropriate linear

differential equations were solved analytically up to the point in the thermoelastic

problem where the boundary conditions had to be satisfied. A numerical technique

based on a least squares approach was used to satisfy these constraints.

*Since little work has been done in this area the resulting solution is fundamental in

that it may be easily used to establish thermal stresses for a variety of test

configurations. Consequently, it may be readily utilized to assess the validity of

thermal mechanical testing procedures which incorporate resistance heating and

neglect thermoelastic stresses.

S.
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Table 1
Electric Potential Coefficient Values

Coefficient Number Value
(n) (A)

0 .970527300
1 1.414210000
2 .341726000
3 -.353554000
4 -.341728200
5 -.044193700
6 .069035320
7 -.011048700
8 -.054572040
9 -.003452562

10 .028407400
11 -.001208524

12 -.021641700
13 -.000453151
14 .014980200
15 -.000178091
16 -.011750900
17 -.000072299
18 .009123044
19 -.000030232
20 -.007432150
21 -.000012750
22 .006108524
23 -.000005576
24 -.005137681
25 -.000002395
26 .004368960
27 -.000001079

28 -.003766370
29 -.000000430
30 .003277960
31 -.000000251

32 -.002879890

Notes:

E C + z Cr 2 Cos
no 2
n=1

4-" C =A Eo a(2 -n / 2 for n 0,1,2,3....
n n L

e.g.,

Ea E E
C= 0.9705273 _,L -2 in volts/in; C, = -L

"L L

r r %
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Table 2
Properties of IN100

.%..

Temperature Linear Thermal Expansion Thermal Electrical Young's
Coefficient, from 700 Conductivity Resistivity Modulus

(OF) (10 6in/in! F) Btu-in/hr-ft -OF) (E-cm) (106 psi)

RT 6.8(1.2) 80,(1) 195(2,3) 29.5( 1)

"" 600 7.5(1)  100(1) 208(3) 27.0(3)

1200 8.0(1) 130(1) 220(2.3) 24.0(2.3)

Notes:

1. Aeronautical Vest-pocket Handbook, P&WA Publication, July 1979,
p. 106-107.

2. Extrapolated.

3. Calculated from data obtained from J. Warren.

Um
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Table 3
Major Constituents of High Strength Nickel Alloys

i 1%)

Material Ni Cr Co Fe Other Reference

IN100 55 12.4 18.5 0.3 (3Mo,4 Ti,5AI) 1
Nickel 100 - -- -- 28
K Monel 63-70 .. .. 2.0 (~ 25 Cu) 28,29
Monel 63-70 - - 2.5 -~ 30 Cu) 28,29
Hastelloy B 60 1 -- 6.0 (28 Mo) 28-30
Hastelloy C 60 16 - - (18Mo,4W) 28-31
"Inconel" 72 16 -- 8 28-31
Inconel 600 (Ni+Co)=72 16 -- 8 32
Inconel 718 55 19 1 15 (5 Nb) 32
Inconel X750 (Ni+Co)=70 15 - 6.5 32
Incoloy 800 33 21 - 42 32

*..

-b~t

.'*-
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Table 4
Materials Properties of Several Nickel-Base Alloys

Linear
Thermal
Expansion Electrical Thermal Young's 2

Material Coefficient Resistivity Conductivity Modulus Temp. K/KIN
(10 6 in/in/F) (10- 6 0-cm) (Btu-in/in-ft -OF) (106 psi) (OF)

Ni 7.4 6.84 637 30 70 3.9
K Monel 7.8 58.3 130 26 70 2.0
Monel 7.8 48.2 173 26 70 1.89
Hastelloy B 5.5 135 78.2 28.5 70 1.16
Hastelloy C 6.3 133 86.9 28.5 70 1.21
Inconel 6.4 98.1 104 31 70 1.51
Inconel 600 5.8 103 103 30 70 1.28

7.9 107 133 27.5 600 1.57
8.6 113 172 24.8 1200 1.6

Inconel 718 7.8 125 77 29 70 1.83
8.0 129 111 26.7 600 1.53
8.6 134 147 23.7 1200 1.54

Inconel X750 6.9 121 83 31 70 1.66
7.5 126 109 (28.5) 600 1.6

." 8.4 131 143 25.5 1200 1.2
Incoloy 800 8.7 98.8 80 28.4 70 2.4

9.0 111 115 25.4 600 1.8
9.6 124 152 22.3 1200 1.6

%4....

2K refers to the stress intensity factor calculated for IN100.

IN %
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Appendix A

DETAILS OF THE THERMOELASTIC SOLUTION

From

V -aE . 2 T

and

V 2 T = E 0 2 _ ,

2k L r

the governing equation can be written as

= 'E (E /L) 2  a B

2k(1 - ) r r

where + must satisfy the traction conditions of (33) and (34). Using the principle of

linear superposition, let

41=+H ++P

where + is the particular solution satisfyingp

B
V 4  z -,S P r

and H is the homogeneous solution satisfying

V4+ H = 0.

A solution for t p is

Br
3

*P 9 9

The homogeneous solution, +H can also be broken into component parts:
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H H1 H2

where +H2 is the Williams' eigenfunction solution (* H2 automatically satisfies (34) and

its coefficients are numerically determined such that (33) is satisfied in a least

squares sense) while *0 HI frees up the crack faces from the tractions imposed by tP.

By separation of variables, an expression for 4*>H1 is:

Br
3

* =- cos9
HI 9

It is noted that the combination 4 + H1 satisfies the crack face conditions:

i a2 .1
P H1

or0 9 r - + BST 8 T at 8

709 0at 9=ar r -

The appropriate boundary conditions for H2 are derived from

a) a a a2 + T = ,T
r r=a r ar r -'2  [ 1

or, after incorporating the above expressions for *p and *H and evaluating at r = a,

i aH2 1 a 2 .H2 Ba
r H2 - (3 + 2cos9).:.r a~r r-  ae r=a 9

and

br I = + +*)J=
b) r ra fr ra P H1 + 4 H2 0

or,

a * H2 2
" - (r --- ) = " 9 Ba sinO
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Thus, the Williams' eigenfunction solution must satisfy boundary conditions of the

form:

Ba
= -- (3 + 2cosO)

r r a 9

S Ba

ro r= -- 2 sine

In order to generalize and further simplify the numerical evaluation of coefficients,

Dn, in the eigenfunction solutions, tH2' these coefficients can be expressed as the

sum of normalized coefficients dln) and d2(n) which correspond to unit pressure andsum2

sinusoidal loadings, respectively, on the boundary r = a. In other words, if on the

boundary r = a,

00 00-' : d ( n)  : d(n)
(or) = A d n(O) = 1, (frO)l = ,nlO) =O

1 n=1 n=1

00

= d2n) A (0)= cos0, (7r ) 2  2 d 2 (n) Yn(O) sinO,
2 n=1 r 2 n=1

For An() and 1n(O) representing the Williams' eigenfunction series for ar and 7 r8'

respectively, the coefficients D in (40) are such that

(n-)/2 Ba (n()Dn aln- 21/2  
- 9 (3d 1 + 2 d2 (n)), = 1,2... 0.

"" Numerical calculation of dl (n) and d2(n) is discussed in Appendix B.

Substituting for B and dividing by a the singular coefficient, D1, becomes

a' 5/2 E 2 &E (1) (1)
D1 _ - " a (-P) (3d + 2d

1 2k L 91 - ) 1 2'I
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% Appendix B

METHOD OF LEAST SQUARES: CALCULATIONS AND CONVERGENCE CHECKS

The method of least squares was used to determine the coefficients d1
I n) and d2(n)

so that the appropriate boundary conditions presented in Appendix A are satisfied.

The least squares method constructs a series representation which fits the boundary

conditions over the interval of interest with a minimum of error. If the boundary

conditions are written

cr = f('), frO = g(O) on r = a,

the error involved in summing c,, and rr, at the boundary r = a is3

00 00

f i{ f(0) - Z dnl(0)]2 + g(6) 2: dn '(,)] 2 ) dOn1 "n=1

where fin(6) and yn(0) represent the Williams' eigenfunction series for Crr and rr-9

respectively.

In order to minimize f with respect to each coefficient d, take

m n= 1aE -.- 2 [ f( ] } ~9]Im

-2 r(t) - 7 def ned I dO

or,

00 00

m ~n=1 Ynm+n

If the array In is defined as

"nm

3 The calculations must be performed separately for the unit pressure and sinusoidal loading conditions. The
method in the text describes the general pr 9 cedure to be followed in both cases. For ease of notation, we
have used d in place of either dI  or d2  in this appendix.

Le = , o °. . • n 2 .% "1% % .° ." -% " .' % " .% . ", ." ,""= % a% % "=% %



36

nm = J'rnrm + YnYm)dB

and the constraint vector components as

Fm  = f ),n + g(O)y r)d

Then the error is minimized in a least squares sense if

N

2: dlnIn = F m as N -*00

n= 1

This equation can be solved for the unknown coefficients d for various values of Nn

using a standard LU-decomposition method.

To check the numerical convergence, three tests were performed:
1. Stresses and errors were evaluated when functions f = 1, g = sin2o were

" inputted. Results for the cases N = 4 and N = 16 are plotted in Figures
B-1 and B-2 along with the known functions for comparison. Excellent
correspondence between the known functions and the series
representations for N = 16 is noted, while the case N = 4 still results in
rather large error values.

2. The coefficients were calculated for a test case in which the exact
coefficients were known. These were used to generate boundary
conditions to see if the same coefficients were rendered. Results are
tabulated in Table B-1 and show error values on the order of 10- 5.

3. The coefficients were used to compute the boundary stresses to compare
with the theoretical boundary conditions. Figures B-3 and B-4 show the
results for four values of N. The results show that the boundary
conditions are satisfied quite well for N as small as 16. Excellent
agreement is noted for higher values of N.

The convergence checks illustrate quite rapid convergence and excellent behavior of

the functions with approximately zero error accomplished with as low as 32

coefficients.

%
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Table B- 1

NUMERICAL CONVERGENCE CHECK #2

N Crack Size = .075 Crack Size 0.1
Input Values Output Values Input Values Output Values

d1  2.486730 2.486710 4.420850 4.420810

d2  1.313280 1.313270 2.334720 2.334700

d 3  -5.091920 -5.091870 -9.052300 -9.052190

d 4  0.383660 0.383655 0.682062 0.682052

.1

,,

:.1
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